Auditorium Exercise Sheet 4
 Differential Equations I for Students of Engineering Sciences

Eleonora Ficola

Department of Mathematics of Hamburg University Winter Semester 2023/2024
20.11.2023

Table of contents

(1) Resolution by substitution of first order non-linear ODEs

- Bernoulli equation
- Riccati equation
(2) First order exact differential equations
- Exact ODEs and resolution by potentials
- Integrability criterion
(3) Reduction to first order
- Equations without explicit dependent variable
(4) Exercises

Bernoulli equation*

A first order (non-linear) equation of the form

$$
\begin{align*}
& y^{\prime}(t)=a(t) y(t)+b(t) y(t)^{\alpha}, \quad a, b \in \mathrm{C}(I), \alpha \in \mathbb{R} \backslash\{0,1\} \tag{1}\\
&(\text { necessary } y>0 \text { if } \alpha \notin \mathbb{N})
\end{align*}
$$

is called Bernoulli differential equation

With the substitution $u(t)=y^{1-\alpha}(t)$, it is $u^{\prime}(t)=(1-\alpha) y^{\prime}(t) y(t)^{-\alpha}$, and dividing the equation by y^{α} we get

$$
u^{\prime}(t)=(1-\alpha)[a(t) u(t)+b(t)] \rightarrow \text { first order, linear ODE in } u
$$

which can now be solved in u (apply formula or separation of variables). Finally, substitute back $y=u^{1 /(1-\alpha)}$.
*From the Swiss mathematician Jacob Bernoulli (1655-1705)

Example 1

Find the general solution of the ODE $y^{\prime}=y+2 y^{5}$, for $y=y(t)$.
It is a Bernoulli equation with $a(t)=1, b(t)=2$ and $\alpha=5$: we apply the substitution $u(t)=y^{1-\alpha}(t)=y^{-4}(t) \Longrightarrow u^{\prime}(t)=-4 y^{\prime}(t) y^{-5}(t)$.

Example 1

Find the general solution of the ODE $y^{\prime}=y+2 y^{5}$, for $y=y(t)$.
It is a Bernoulli equation with $a(t)=1, b(t)=2$ and $\alpha=5$: we apply the substitution $u(t)=y^{1-\alpha}(t)=y^{-4}(t) \Longrightarrow u^{\prime}(t)=-4 y^{\prime}(t) y^{-5}(t)$.

Rewrite the ODE as:
$\frac{y^{\prime}}{y^{5}}=\frac{y}{y^{5}}+2 \frac{y^{5}}{y^{5}} \Longrightarrow \frac{-u^{\prime}}{4}=u+2 \Longrightarrow u^{\prime}=-4(u+2) \rightarrow 1^{\text {st }}$ order, linear ODE
Solving now in u returns: $u(t)=C e^{-4 t}-2, C \in \mathbb{R}$. The solution of the original ODE is thus:

$$
y(t)= \pm u^{-1 / 4}(t)= \pm \frac{1}{\left(C e^{-4 t}-2\right)^{1 / 4}}
$$

Riccati equation*

A first order (non-linear) equation of the form

$$
\begin{equation*}
y^{\prime}(t)=a(t) y(t)+b(t) y(t)^{2}+c(t), \text { with } a, b, c \in \mathrm{C}(I) \tag{2}
\end{equation*}
$$

is called Riccati differential equation.

Suppose we already have a particular solution y_{p} of (2). Then the difference $v(t):=y(t)-y_{p}(t)$ solves the Bernoulli ODE $v^{\prime}(t)-v(t)\left[a(t)+2 b(t) y_{p}(t)\right]=b(t) v(t)^{2}$.

Thus setting $u(t):=v^{-1}(t)=\frac{1}{y(t)-y_{p}(t)}$, we find the first order linear ODE

$$
\begin{equation*}
u^{\prime}(t)=-u(t)\left[a(t)+2 b(t) y_{p}(t)\right]-b(t) \tag{3}
\end{equation*}
$$

to be solved in u.
*Studied by the Venetian mathematician Jacopo Riccati (1676-1754)

Example 2

Find the general solution of the ODE $y^{\prime}=-y^{2}+\frac{2}{t^{2}}$, for $y=y(t)$ and $t>0$. It is a Riccati equation with $a(t)=0, b(t)=-1$ and $c(t)=\frac{2}{t^{2}}$. Taking $y_{p}(t)=\frac{k}{t}, k \in \mathbb{R}$ as Ansatz for a particular solution, find the appropriate k.

Example 2

Find the general solution of the ODE $y^{\prime}=-y^{2}+\frac{2}{t^{2}}$, for $y=y(t)$ and $t>0$. It is a Riccati equation with $a(t)=0, b(t)=-1$ and $c(t)=\frac{2}{t^{2}}$. Taking $y_{p}(t)=\frac{k}{t}, k \in \mathbb{R}$ as Ansatz for a particular solution, find the appropriate k.

By substitution we see that $y_{p}:=-1 / t$ is a solution. Let $u:=\frac{1}{y-y_{p}}$, from which equation (3) becomes:

$$
u^{\prime}(t)=-u(t)[0+2(-1)(-1 / t)]+1=1-2 u(t) / t
$$

Solving the latter in u yields: $u(t)=\frac{t^{3}+C}{3 t^{2}}$, for $C \in \mathbb{R}$.
Returning to y we obtain: $y(t)=y_{p}(t)+\frac{1}{u(t)}=-\frac{1}{t}+\frac{3 t^{2}}{t^{3}+C}=\frac{2 t^{3}-C}{t\left(t^{3}+C\right)}$, plus $y(t)=y_{p}(t)=-1 / t$.

Exact differential equations

Let $D \subseteq \mathbb{R}^{2}$ open. A first order ODE of the form

$$
\begin{equation*}
f(t, y(t))+g(t, y(t)) y^{\prime}(t)=0 \tag{4}
\end{equation*}
$$

is called exact in D if there exists a C^{1} function $\psi: D \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
\frac{\partial \psi}{\partial t}(t, y)=f(t, y) \\
\frac{\partial \psi}{\partial y}(t, y)=g(t, y)
\end{array}\right.
$$

for all $(t, y) \in D$. In such case, a C^{1} function y s.t. $(t, y(t)) \in D \forall t$ solves (4) if and only if

$$
\begin{aligned}
& \frac{\mathrm{d} \psi}{\mathrm{~d} t}(t, y(t))=\frac{\partial \psi}{\partial t}(t, y(t))+\frac{\partial \psi}{\partial y}(t, y) \frac{\mathrm{d} y}{\mathrm{~d} t}=f(t, y)+g(t, y) y^{\prime}(t)=0 \\
& \Longleftrightarrow \psi(t, y(t))=C, \quad \text { for some } C \in \mathbb{R} .
\end{aligned}
$$

If (4) is exact, the function ψ is called potential of the ODE.

Necessary and sufficient conditions to exact ODEs

Determining if an ODE of the kind

$$
\begin{equation*}
f(t, y(t))+g(t, y(t)) y^{\prime}(t)=0 \tag{4}
\end{equation*}
$$

is exact by applying the definition may not be immediate.
For this reason, we make use of the following criterion:
Theorem (integrability criterion for exact ODEs)
If f and g are $\mathrm{C}^{1}(D)$ with $D \subseteq \mathbb{R}^{2}$ simply connected, then:
(4) is exact in $D \Longleftrightarrow \frac{\partial f}{\partial y}(t, y)=\frac{\partial g}{\partial t}(t, y)$, for all $(t, y) \in D$.

Necessary and sufficient conditions to exact ODEs

Determining if an ODE of the kind

$$
\begin{equation*}
f(t, y(t))+g(t, y(t)) y^{\prime}(t)=0 \tag{4}
\end{equation*}
$$

is exact by applying the definition may not be immediate.
For this reason, we make use of the following criterion:

Theorem (integrability criterion for exact ODEs)

If f and g are $\mathrm{C}^{1}(D)$ with $D \subseteq \mathbb{R}^{2}$ simply connected, then:
(4) is exact in $D \Longleftrightarrow \frac{\partial f}{\partial y}(t, y)=\frac{\partial g}{\partial t}(t, y), \quad$ for all $(t, y) \in D$.

Example: the differential equation $2 \mathrm{ty}(\mathrm{t})+\left(\boldsymbol{t}^{2}+\boldsymbol{y}(\boldsymbol{t})^{2}+3 \boldsymbol{y}(\boldsymbol{t})\right) y^{\prime}(t)=0$ is exact in \mathbb{R}^{2}, since $\frac{\partial \mathbf{f}}{\partial y}(t, y)=2 t=\frac{\partial \mathbf{g}}{\partial t}(t, y)$ for every $(t, y) \in \mathbb{R}^{2}$.

Equations without explicit dependent variable

Consider an ODE of order $m>1$ in which the dependent variable does NOT appear, namely (in the explicit form)

$$
y^{(m)}=f\left(t, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m-1)}\right)
$$

Letting $u(t):=y^{\prime}(t)$, we reduce the order of the equation by one.
Specifically, for $m=2$ it is $y^{\prime \prime}=f\left(t, y^{\prime}\right)$ and applying the substitution we find

$$
u^{\prime}=f(t, u) \rightarrow \text { first order ODE in } u=u(t)
$$

to be solved with respect to u (by the formula, or whenever possible by separation of variables). Finally bring back to y.

Example 3

In order to find the general solution of the ODE

$$
y^{\prime \prime}+2\left(y^{\prime}\right)^{2}=0 \rightarrow \text { (non-linear) second order ODE, no explicit } y
$$

we substitute $u(t):=y^{\prime}(t)$ and find

$$
u^{\prime}+2 u^{2}=0 \rightarrow \text { (non-linear) first order ODE in } u
$$

Example 3

In order to find the general solution of the ODE

$$
y^{\prime \prime}+2\left(y^{\prime}\right)^{2}=0 \rightarrow \text { (non-linear) second order ODE, no explicit } y
$$

we substitute $u(t):=y^{\prime}(t)$ and find

$$
u^{\prime}+2 u^{2}=0 \rightarrow \text { (non-linear) first order ODE in } u
$$

Notice that $u \equiv 0$ is a solution (corresponding to $y \equiv C$). Suppose then $u \neq 0$ and apply separation of variables to obtain:

$$
\begin{gathered}
\int \frac{-1}{2 u^{2}} \mathrm{~d} u=\int \frac{u^{\prime}(t)}{2 u(t)^{2}} \mathrm{~d} t=\int \mathrm{d} t \Longleftrightarrow \\
\Longleftrightarrow \frac{1}{2 u}=t+C_{1} \Longleftrightarrow u(t)=\frac{1}{2 t+C_{1}}=y^{\prime}(t) \Longrightarrow \\
y(t)=\int \frac{1}{2 t+C_{1}} \mathrm{~d} t=\frac{1}{2} \ln \left|2 t+C_{1}\right|+C_{2} \text { OR } y(t)=C \text { is the gen. sol. }
\end{gathered}
$$

Exercise 1

For any of the following differential equations:

- identify if it is a Bernoulli or a Riccati equation;
- determine the appropriate substitution to get a linear ODE;
- solve the new equation and thus the original one.
(i) $y^{\prime}+t y-t y^{3}=0$;
(ii) $t^{2} u^{\prime}-u^{4}=t u, t>2$;
(iii) $y^{\prime}+6 y^{2}=1 / t^{2}, t>0$; Hint: look for sol. of the kind $y_{p}(t):=\frac{\alpha}{t}+\beta$;
(iv) $x^{\prime}-e^{t} \sqrt{x}=-2 x, x>0$;
(v) $x^{3} u^{\prime}+x^{2} u-u^{2}=2 x^{4}, x>1$. Hint: look for a $2^{\text {nd }}$ degree polynomial sol.

Exercise 2

For any of the following differential equations, determine:

- if they are exact or not;
- for each exact equation compute a corresponding potential;
- whenever possible, determine the solution of the exact ODEs by solving the (algebraic) level set equation for the potential.
(i) $2 t u+\left(t^{2}+3\right) u^{\prime}=0$;
(ii) $\cos (t) y^{\prime}+y-t^{3} y=0$;
(iii) $y+(x-1) y^{\prime}=-2 x, x>1$;
(iv) $3 x^{2}+y^{2}+2 y(1+x) y^{\prime}=0, x>3$;
(v) $-y \cos (t)=y^{\prime}(\sin (t)+\sin (y)+y \cos (y))$;
(vi) $2-\left(3 x^{2}+u-u^{2}\right) u^{\prime}+x^{3}=3 x u^{2}$.

Exercise 3

Solve the following initial value problems of second order differential equations.
(i) $\left\{\begin{array}{l}y^{\prime \prime}(t)-8 y^{\prime}(t)=8 ; \\ y(0)=1 ; \\ y^{\prime}(0)=3 .\end{array}\right.$
(ii) $\left\{\begin{array}{l}\cos (t) u^{\prime \prime}(t)+\sin (t) u^{\prime}(t)=3 \cos ^{2}(t), t \in(0, \pi / 2) \text {; } \\ u(0)=2 ; \\ u^{\prime}(0)=-1 .\end{array}\right.$

EXERCISE 1
(i) $\left[y^{\prime}+t y-t y^{3^{\downarrow}}=0\right] \frac{1^{4 k} d d d e c}{}$

$$
y^{\prime}=\underset{a(t) \quad b(t)}{-t y^{3}}
$$

Divide the terms in the oDE by y^{3}
$\frac{y^{\prime}}{y^{3}}=\frac{-t \cdot y}{y^{3}}+\frac{t y^{3}}{y^{3}}=\frac{-t}{y^{2}}+t$

$$
\frac{u^{\prime}}{2}=-t u+t \Rightarrow\left[u^{\prime}=2 t, u^{(*)}-2 t\right]_{\text {linear }}^{1^{\text {st }} \text { order ODE }}
$$

$u^{\prime}=2 t(u-1) \sim$ separable variable ODE

- If $u \equiv 1 \sim u^{\prime}=0=2 t(1-1) \Rightarrow u \equiv 1$ solves the ODE
- Suppose $u \neq 1$:

$$
\frac{u^{\prime}}{u-1}=2 t \sim \int \frac{(d u)}{u-1}=\int \frac{u^{\prime} d t}{u-1}=\int_{\uparrow}^{2 t} d t
$$

$$
\ln |u-1|=t^{2}+c \Rightarrow|u-1|=e^{t^{2}+c}=e^{c} \cdot e^{t^{2}}, \quad c \in \mathbb{R} \rightarrow e^{c}>0
$$

$u-1= \pm e^{e} e^{t^{2}}$

$$
c_{1}= \pm e^{c} \quad \pm e^{c} \neq 0
$$

$$
\begin{array}{ll}
u-1= \pm e, & c_{1}= \pm e \\
u=1+c_{1} e^{t^{2}}, & c_{1} \neq 0 \leadsto \text { notice that } f o c c_{1}=0, u=1 \text { ! }
\end{array}
$$

Altogether, we get: $\left[u(t)=1+c \cdot e^{t^{2}}, c \in \mathbb{R}\right]$ gene. of $(*)$
Recall: $u(t)=\frac{1}{y^{2}(t)} \sim\left[y(t)= \pm \frac{1}{\sqrt{u(t)}}= \pm \frac{1}{\sqrt{1+c e^{2^{2}}}}, c \in \mathbb{R}\right]$
gen. sol of the original ODE
(iii) $y^{\prime}+6 y^{2}=\frac{1}{t^{2}}, t>0 \leftarrow$ Riccati ODE

$$
a(t)=0
$$

$$
y^{\prime}=-6 y^{2}+\frac{1}{t^{2}}{ }^{\prime \prime}(t) c(t)
$$

- Ip particular sol of the ODE $\sim y_{p}(t)=\frac{\alpha}{t}+\beta, \alpha_{1} \beta$ to be determined

Substitute:

$$
y_{p}^{\prime}=-\frac{\alpha}{t^{2}}
$$

Let $u(t):=\frac{1}{y(t)-y_{p}(t)}=\frac{1}{y(t)-\frac{1}{2 t}}$

Apply the formula to obtain:

$$
\begin{gathered}
0 \\
u^{\prime}(t)=-u(t)\left[g(t)+2 b(t) \cdot y_{p}(t)\right]-b(t) \\
u^{\prime}=+u\left[2 \cdot(+6) \cdot \frac{1}{2 t}\right]+6=\frac{6}{t} u+6
\end{gathered}
$$

$$
\left[u^{\prime}(t)=\frac{6}{t} u(t)+6\right] \begin{aligned}
& 1^{\text {st }} r d r \\
& \text { linear }
\end{aligned}
$$

Section:
$u(t)=e^{A(t)}\left[B^{*}(t)+C\right] \leqslant$ fromule for $1^{\text {st }}$ oder lin oDEs (inhomogeneous)

$$
\begin{aligned}
& A(t)=\int \frac{6}{t} d t=6 \ln (t) \left\lvert\, B^{*}(t)=\int 6 e^{-6 \ln (t)} d t=6 \int e^{-\ln \left(t^{6}\right)} d t=6 \int \frac{1}{e^{\ln \left(t^{6}\right.}} d t=\right. \\
& =\oint t^{-6} d t=6 t^{-5}\left(-\frac{1}{5}\right)=-\frac{6}{5 t^{5}}+y_{0}^{1} \\
& {\left[u(t)=e^{\ln \left(t^{6}\right)}\left(-\frac{6}{5 t^{5}}+c\right)=c t^{6}-\frac{6}{5} t, c \in \mathbb{R}\right] \rightarrow \operatorname{sol} \text { of }\left(*^{*}\right)}
\end{aligned}
$$

Substitute: $u=\frac{1}{y-y_{p}} \Rightarrow\left[\begin{array}{l}y=\frac{1}{u}+y_{p}=\frac{1}{c t^{6}-\frac{6}{5} t}+\frac{1}{2 t} \\ y=\frac{1}{2 t}\end{array}\right] \rightarrow$ gen. set of (iii)

EXERCISE 2
(i) $2 t \cdot u+\left(t^{2}+3\right) u^{\prime}=0 \leadsto$ is it exact in $D=\mathbb{R}^{2}$?

$$
\left.\left(u^{\prime}=\frac{-2 t}{t^{2}+3} u\right)>\begin{array}{l}
f(t, u)=2 t \cdot u \\
g(t, u)=t^{2}+3
\end{array} \quad f, g \in C^{\infty} \not \mathbb{R}^{2}\right)
$$

$\frac{\partial f}{\partial u}=2 t, \forall t \Rightarrow$ by criterion, the ODE is exact!

$$
\frac{\partial g}{\partial t}=2 t
$$

We look now for a potential of the ODE: a function $\Psi=\Psi(t, u)$,

$$
\Psi: \mathbb{R}^{2} \rightarrow \mathbb{R} \text { such that }\left\{\begin{array}{l}
\frac{\partial \psi}{\partial t}=f \\
\frac{\partial \psi}{\partial u}=g
\end{array} \quad \forall(t, u) \in \mathbb{R}^{2}\right.
$$

Solve:

$$
\begin{aligned}
& f(t, u)=2 t u= \frac{\partial \psi}{\partial t}(t, u) \Rightarrow \Psi(t, u)=\int 2 t u(d t)=t^{2} u+c(u)=t^{2} u+3 u+c^{\prime} \\
& \text { set } \\
& g(t, u)=t^{2}+3 \stackrel{\downarrow}{=} \frac{\partial \psi}{\partial u}(t, u)=t^{2}+c^{\prime}(u) \Rightarrow t^{2}+c^{\prime}(u)=t^{2}+3 \\
& c(u)=3 u+c^{6}
\end{aligned}
$$

We solve the ODE employing the property of the potential Ψ :
without loss of generdity, we may take $c=0 \sim$ we are

$$
\frac{d \psi(t, u(t))=0 \sim[\Psi(t, u(t))=K],}{} \begin{aligned}
& \text { for } u=u(t) \\
& s o l \text { of the exact } O D E,
\end{aligned}
$$

$$
\zeta t^{2} \cdot u+3 u=k
$$

$u\left(t^{2}+3\right)=K \Rightarrow\left[u(t)=\frac{K}{t^{2}+3}\right]$ is the gensel of the OIE !

