Auditorium Exercise Sheet 4 Differential Equations I for Students of Engineering Sciences

Eleonora Ficola

Department of Mathematics of Hamburg University Winter Semester 2023/2024

20.11.2023

Table of contents

Resolution by substitution of first order non-linear ODEs

- Bernoulli equation
- Riccati equation

Pirst order exact differential equations

- Exact ODEs and resolution by potentials
- Integrability criterion

3 Reduction to first order

• Equations without explicit dependent variable

Bernoulli equation*

A first order (non-linear) equation of the form

$$y'(t) = a(t)y(t) + b(t)y(t)^{\alpha}, \quad a, b \in C(I), \ \alpha \in \mathbb{R} \setminus \{0, 1\}$$
(1)
(necessary $y > 0$ if $\alpha \notin \mathbb{N}$)

is called Bernoulli differential equation

With the substitution $u(t) = y^{1-\alpha}(t)$, it is $u'(t) = (1-\alpha)y'(t)y(t)^{-\alpha}$, and dividing the equation by y^{α} we get

 $u'(t) = (1 - \alpha)[a(t)u(t) + b(t)] \rightarrow \text{first order, linear ODE in } u$

which can now be solved in u (apply formula or separation of variables). Finally, substitute back $y = u^{1/(1-\alpha)}$.

Auditorium Exercise Sheet 4

^{*}From the Swiss mathematician Jacob Bernoulli (1655-1705)

Find the general solution of the ODE $y' = y + 2y^5$, for y = y(t).

It is a Bernoulli equation with a(t) = 1, b(t) = 2 and $\alpha = 5$: we apply the substitution $u(t) = y^{1-\alpha}(t) = y^{-4}(t) \implies u'(t) = -4y'(t)y^{-5}(t)$.

Find the general solution of the ODE $y' = y + 2y^5$, for y = y(t). It is a Bernoulli equation with a(t) = 1, b(t) = 2 and $\alpha = 5$: we apply the substitution $u(t) = y^{1-\alpha}(t) = y^{-4}(t) \implies u'(t) = -4y'(t)y^{-5}(t)$.

Rewrite the ODE as:

$$\frac{y'}{y^5} = \frac{y}{y^5} + 2\frac{y^{s'}}{y^{s'}} \implies \frac{-u'}{4} = u + 2 \implies u' = -4(u+2) \rightarrow 1^{st} \text{ order, linear ODE}$$

Solving now in *u* returns: $u(t) = Ce^{-4t} - 2$, $C \in \mathbb{R}$. The solution of the original ODE is thus:

$$y(t) = \pm u^{-1/4}(t) = \pm \frac{1}{(Ce^{-4t} - 2)^{1/4}}$$

Riccati equation^{*}

A first order (non-linear) equation of the form

$$y'(t) = a(t)y(t) + b(t)y(t)^2 + c(t)$$
, with $a, b, c \in C(I)$ (2)

is called Riccati differential equation.

Suppose we already have a **particular solution** y_p of (2). Then the difference $v(t) := y(t) - y_p(t)$ solves the Bernoulli ODE $v'(t) - v(t)[a(t) + 2b(t)y_p(t)] = b(t)v(t)^2$.

Thus setting $u(t) := v^{-1}(t) = \frac{1}{y(t)-y_{p}(t)}$, we find the first order linear ODE

$$u'(t) = -u(t)[a(t) + 2b(t)y_{p}(t)] - b(t)$$
(3)

to be solved in u.

*Studied by the Venetian mathematician Jacopo Riccati (1676-1754)

D:0	ferential	Ennek	
	erenua	Equat	ions

Auditorium Exercise Sheet 4

Find the general solution of the ODE $y' = -y^2 + \frac{2}{t^2}$, for y = y(t) and t > 0. It is a Riccati equation with a(t) = 0, b(t) = -1 and $c(t) = \frac{2}{t^2}$. Taking $y_p(t) = \frac{k}{t}$, $k \in \mathbb{R}$ as Ansatz for a particular solution, find the appropriate k.

Find the general solution of the ODE $y' = -y^2 + \frac{2}{t^2}$, for y = y(t) and t > 0. It is a Riccati equation with a(t) = 0, b(t) = -1 and $c(t) = \frac{2}{t^2}$. Taking $y_p(t) = \frac{k}{t}$, $k \in \mathbb{R}$ as Ansatz for a particular solution, find the appropriate k.

By substitution we see that $y_p := -1/t$ is a solution. Let $u := \frac{1}{y-y_p}$, from which equation (3) becomes:

$$u'(t) = -u(t)[0 + 2(-1)(-1/t)] + 1 = 1 - 2u(t)/t$$

Solving the latter in u yields: $u(t) = \frac{t^3+C}{3t^2}$, for $C \in \mathbb{R}$. Returning to y we obtain: $y(t) = y_p(t) + \frac{1}{u(t)} = -\frac{1}{t} + \frac{3t^2}{t^3+C} = \frac{2t^3-C}{t(t^3+C)}$, plus $y(t) = y_p(t) = -1/t$.

Exact differential equations

Let $D \subseteq \mathbb{R}^2$ open. A first order ODE of the form

$$f(t, y(t)) + g(t, y(t))y'(t) = 0$$
(4)

is called exact in D if there exists a C^1 function $\psi: D \to \mathbb{R}$ such that

$$\begin{cases} \frac{\partial \psi}{\partial t}(t, y) = f(t, y) \\ \frac{\partial \psi}{\partial y}(t, y) = g(t, y), \end{cases}$$

for all $(t, y) \in D$. In such case, a C^1 function y s.t. $(t, y(t)) \in D \ \forall t$ solves (4) if and only if

$$\frac{\mathrm{d}\psi}{\mathrm{d}t}(t,y(t)) = \frac{\partial\psi}{\partial t}(t,y(t)) + \frac{\partial\psi}{\partial y}(t,y)\frac{\mathrm{d}y}{\mathrm{d}t} = f(t,y) + g(t,y)y'(t) = 0$$
$$\iff \psi(t,y(t)) = C, \quad \text{for some } C \in \mathbb{R}.$$

If (4) is exact, the function ψ is called **potential** of the ODE.

Necessary and sufficient conditions to exact ODEs

Determining if an ODE of the kind

$$f(t, y(t)) + g(t, y(t))y'(t) = 0$$
(4)

is exact by applying the definition may not be immediate. For this reason, we make use of the following criterion:

Theorem (integrability criterion for exact ODEs) If f and g are $C^{1}(D)$ with $D \subseteq \mathbb{R}^{2}$ simply connected, then: (4) is exact in $D \iff \frac{\partial f}{\partial y}(t, y) = \frac{\partial g}{\partial t}(t, y)$, for all $(t, y) \in D$.

Necessary and sufficient conditions to exact ODEs

Determining if an ODE of the kind

$$f(t, y(t)) + g(t, y(t))y'(t) = 0$$
(4)

is exact by applying the definition may not be immediate. For this reason, we make use of the following criterion:

Theorem (integrability criterion for exact ODEs) If f and g are $C^1(D)$ with $D \subseteq \mathbb{R}^2$ simply connected, then: (4) is exact in $D \longleftrightarrow \frac{\partial f}{\partial t}(t, y) = \frac{\partial g}{\partial t}(t, y)$ for all $(t, y) \in D$.

(4) is exact if
$$D \iff \frac{\partial y}{\partial y}(t,y) = \frac{\partial t}{\partial t}(t,y)$$
, for all $(t,y) \in D$.

Example: the differential equation $2ty(t) + (t^2 + y(t)^2 + 3y(t))y'(t) = 0$ is exact in \mathbb{R}^2 , since $\frac{\partial \mathbf{f}}{\partial y}(t, y) = 2t = \frac{\partial \mathbf{g}}{\partial t}(t, y)$ for every $(t, y) \in \mathbb{R}^2$.

Equations without explicit dependent variable

Consider an ODE of order m > 1 in which the dependent variable does NOT appear, namely (in the explicit form)

$$y^{(m)} = f(t, y', y'', \dots, y^{(m-1)}).$$

Letting u(t) := y'(t), we reduce the order of the equation by one.

Specifically, for m = 2 it is y'' = f(t, y') and applying the substitution we find

$$u' = f(t, u) \rightarrow$$
first order ODE in $u = u(t)$

to be solved with respect to u (by the formula, or whenever possible by separation of variables). Finally bring back to y.

In order to find the general solution of the ODE

 $y'' + 2(y')^2 = 0 \rightarrow$ (non-linear) second order ODE, no explicit y

we substitute $u(t) \coloneqq y'(t)$ and find

$$u' + 2u^2 = 0 \rightarrow$$
 (non-linear) first order ODE in u

In order to find the general solution of the ODE

 $y'' + 2(y')^2 = 0 \rightarrow$ (non-linear) second order ODE, no explicit y

we substitute $u(t) \coloneqq y'(t)$ and find

$$u' + 2u^2 = 0 \rightarrow$$
 (non-linear) first order ODE in u

Notice that $u \equiv 0$ is a solution (corresponding to $y \equiv C$). Suppose then $u \neq 0$ and apply separation of variables to obtain:

$$\int \frac{-1}{2u^2} \,\mathrm{d}u = \int \frac{u'(t)}{2u(t)^2} \,\mathrm{d}t = \int \,\mathrm{d}t \iff$$

$$\iff \frac{1}{2u} = t + C_1 \iff u(t) = \frac{1}{2t + C_1} = y'(t) \implies$$

 $y(t) = \int \frac{1}{2t + C_1} dt = \frac{1}{2} \ln |2t + C_1| + C_2 \text{ OR } y(t) = C \text{ is the gen. sol.}$

Exercise 1

For any of the following differential equations:

- identify if it is a Bernoulli or a Riccati equation;
- determine the appropriate substitution to get a linear ODE;
- solve the new equation and thus the original one.

(*i*)
$$y' + ty - ty^3 = 0$$
;
(*ii*) $t^2u' - u^4 = tu$, $t > 2$;
(*iii*) $y' + 6y^2 = 1/t^2$, $t > 0$; Hint: look for sol. of the kind $y_p(t) := \frac{\alpha}{t} + \beta$;
(*iv*) $x' - e^t \sqrt{x} = -2x$, $x > 0$;
(*v*) $x^3u' + x^2u - u^2 = 2x^4$, $x > 1$. Hint: look for a 2nd degree polynomial sol.

Exercise 2

For any of the following differential equations, determine:

- if they are exact or not;
- for each exact equation compute a corresponding potential;
- whenever possible, determine the solution of the exact ODEs by solving the (algebraic) level set equation for the potential.

(i)
$$2tu + (t^2 + 3)u' = 0;$$

(ii) $\cos(t)y' + y - t^3y = 0;$
(iii) $y + (x - 1)y' = -2x, x > 1;$
(iv) $3x^2 + y^2 + 2y(1 + x)y' = 0, x > 3;$
(v) $-y\cos(t) = y'(\sin(t) + \sin(y) + y\cos(y));$
(vi) $2 - (3x^2 + u - u^2)u' + x^3 = 3xu^2.$

Exercise 3

Solve the following initial value problems of second order differential equations.

(i)
$$\begin{cases} y''(t) - 8y'(t) = 8; \\ y(0) = 1; \\ y'(0) = 3. \end{cases}$$

(ii)
$$\begin{cases} \cos(t)u''(t) + \sin(t)u'(t) = 3\cos^2(t), \ t \in (0, \pi/2); \\ u(0) = 2; \\ u'(0) = -1. \end{cases}$$

13/13

EXERCISE 1
(i)
$$\begin{bmatrix} y' + ty - ty^3 = 0 \end{bmatrix} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{dy}{dt} = 0$$

 $y' = \begin{bmatrix} y + (t)^3 \\ -ty' \end{bmatrix} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{dy}{dt} = 0$
Divide the terms in the OE by y^3 :
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1u' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1u' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1u' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1u' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1u' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1u' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1u' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1u' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1y' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y^3 \cdot y' = -2y' \\ -1y' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y' + 2y' + 2y' = -2y' \\ -1y' = y' \end{bmatrix}$
 $\begin{vmatrix} u' = -2y' + 2y' + 2$

(i.i)
$$y' + 6y^2 = \frac{1}{t^2}$$
, $t > 0$
Ricall OE
 $a(t) = 0$
 $y' = \begin{pmatrix} -6y^2 \\ t^2 \end{pmatrix}^2$, $\begin{pmatrix} 4y \\ t^2 \end{pmatrix}_{(ct)}$
 y_p porticular sel of the ODE \sim $y_p(t) = \frac{1}{t^2}$, $d_1\beta$ to be determined
Substitute: $y'_p = -\frac{\alpha}{t^2}$
 $-\frac{\alpha}{t^2} + 6\left(\frac{\alpha}{t} + \beta\right)^2 = \frac{1}{t^2}$, $y'_p(t) = \frac{1}{2t}$, $y'_p(t) = -\frac{1}{3t}$
 $\left(\frac{\alpha}{t^2} + \frac{1}{t^2}\right)^2 = \frac{1}{t^2}$, $y'_p(t) = \frac{1}{2t}$, $y'_p(t) = -\frac{1}{3t}$, $y'_p(t) = \frac{1}{3t}$, $y'_p(t)$

EXERCISE 2
(i)
$$2t \cdot u^{+}(t^{2}+3)u^{!}=0 \quad \Rightarrow \text{ is at exact im } D=\mathbb{R}^{2}$$
?
 $\left(u^{!}=\frac{-2t}{t^{2}+3}u\right) \quad f(t,u)=2t \cdot u \quad f,g\in \mathbb{C}^{q}(\mathbb{R}^{2})$
 $g(t,u)=t^{2}+3$
 $\frac{\partial f}{\partial u}=2t \quad \forall t \Rightarrow \text{ by oritorion, the ODE is exact!}$
 $\frac{\partial g}{\partial t}=2t$
We look now for a potential of the ODE : a function $\Psi=\Psi(t,u)$,
 $\Psi; \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\begin{cases} 2\Psi=f \\ \frac{\partial \Psi}{\partial u}=g \end{cases}$.
Solve:

$$f(t,u) = 2tu = \frac{2\Psi}{2t}(t,u) \Rightarrow \Psi(t,u) = \int 2tu \, dt = t^{2}u + c(u) = t^{2}u + 3u + k$$

$$g(t,u) = t^{2} + 3 = \frac{2\Psi}{3u}(t,u) = t^{2} + c'(u) \Rightarrow t^{2} + c'(u) = t^{2} + 3$$

$$c(u) = 3u + c^{2}$$

$$(u) = 4u + t^{2}$$

$$(u) = 4u +$$